
Comparing Hyperdimensional Computing to Deep
Learning for Natural Language Processing Tasks

Todd Morrill
Computer Science Department

Columbia University
tm3229@columbia.edu

Satyam Sharma
Computer Science Department

Columbia University
ss6522@columbia.edu

Abstract—Deep learning requires large quantities of training
data and is both memory and energy intensive, making it imprac-
tical for many low-resource devices. In this work, we explore the
properties of a neuro-inspired approach called hyperdimensional
computing (HDC), which addresses some of the shortcomings of
deep learning models. In particular, we compare

1) Training and inference time
2) Test set accuracy with respect to training set size
3) FLOP and memory usage
4) Robustness to text corruption

in the context of a natural language processing (NLP) classifier
and show that HDC excels in nearly all of these categories.

Index Terms—hyperdimensional computing, HDC, deep learn-
ing, natural language processing, NLP

I. INTRODUCTION

Deep learning is currently the dominant approach in natural
language processing (NLP). In particular, the Transformer [1]
architecture has been shown to be effective for a wide range
of NLP tasks, including language modeling (i.e., next word
prediction), document retrieval, and document classification
[2]. However, deep learning models require a large amount
of training data and are often memory and energy intensive,
which limit their usability on low-resource devices (e.g.
smartphones). Hyperdimensional computing (HDC), on the
other hand, is a neuro-inspired approach to machine learning
that is memory and energy efficient and may require far
less training data to achieve suitable levels of accuracy
[3]. In short, HDC typically represents data as random
high dimensional vectors (e.g. a word may be represented
in {−1, 1}10,000). Each vector might be analagous to a
“thought-vector” corresponding to some activation of neurons
in the brain. HDC uses a variety of elementwise operations
to operate on this data. In particular, the bundling operation
is elementwise vector addition, the binding operation is
elementwise multiplication, the permutation is a rotation of
coordinates (i.e., shift to the left), and comparison can be
done using a hamming distance or cosine similarity. These
operations allow HDC to perform next word prediction,
document retrieval, and classification, among other tasks.

In this project, we experiment with a commonly used
deep learning model for resource constrained settings, the
distilbert-base-uncased transformer model [4]. We
compare this deep learning model to an HDC model for

an NLP classification task, namely language identification,
where the task is to identify which of 21 European languages
[5] a text example belongs to. We evaluate both models using
a range of metrics and evaluate their relative strengths and
weaknesses.

TABLE I
SAMPLE DATA FROM THE LANGUAGE IDENTIFICATION DATASET, WHICH

CONTAINS 21 EUROPEAN LANGUAGES.

Language Example

English for denmark and the united kingdom the relevant
protocols to the treaty make explicit reference to the
socalled opting in and opting out

Bulgarian iskam sshcho taka da podchertaia che nastoiashchata
preporka kategorichno shche zasili motivatsiiata za
razvitie na predpriemachestvoto sred zhenite

Slovak musite zostrojit graf so znazornenim sposobu akym
mozno zapricinuje oteplovanie

Portuguese em meu entender esta reforma nao foi por acaso que
o colega pomes ruiz falou do regulamento financeiro
e por assim dizer uma quimera ha dois anos que dela
se fala mas pareceme que todas as propostas estao a
levantar dificuldades e toda uma serie de problemas

Czech evropske pravni pozadavky na spravedlive primerene
a zakonne zpracovani osobnich udaju maji rozhodu-
jici vyznam a musi byt vzdy dodrzovany

French la commission a alloue des centaines de millions
daide durgence aux populations les plus affectees

II. MODELS AND DATA SET DESCRIPTION

We used Python for our implementation and used PyTorch
and Hugging Face [6] to implement the deep learning
models and TorchHD [7] to implement the HDC models.
distilbert-base-uncased is a commonly used
lightweight transformer model, that is 40% smaller than
BERT (110 million parameters to 66 million), 60% faster
than BERT, and retains 97% of its language understanding
capabilities [4] and as the name implies was trained using
knowledge distillation, with BERT as the teacher model. We
believe this is a natural deep learning model architecture



for comparison to HDC since the authors specifically built
this model with resource-constrained settings in mind (e.g.,
mobile devices).

The HDC model was inspired by the architecture found
in [3]. The model defines a vocabulary of 28 elements, which
contains all characters a through z plus a space and padding
character. Each character is initialized with a random 10,000
dimensional vector in {±1}10,000. High dimensional spaces
have been shown to have useful mathematical properties such
as near orthogonality of all such randomly generated vectors.
The HDC model uses a tri-gram character model which
generates sentence embeddings as follows. For each sentence,
we generate a sequence of tri-grams, where each tri-gram
is the concatenation of three consecutive characters in the
sentence. These 3 letters each have a 10,000 dimensional
vector that represent it. We then use the permutation operation,
which shifts the elements of the first chararacter’s embedding
to the left 2 positions, shifts the elements of the second
character’s embedding to the left 1 position, and doesn’t
shift the third character’s embedding at all. Importantly, this
permutation operation helps the model distinush tri-grams
from one another by breaking the commutativity of addition
and multiplication. Next, we apply the binding operation,
which is the elementwise multiplication of the 3 10,000
dimensional vectors. Finally, we bundle (i.e., add) all the
tri-grams in a sentence to obtain a sentence embedding. In
particular, we implement

m−n⊕
i=0

n−1⊗
j=0

Πn−j−1(Vi+j) (1)

where
∏

denotes the permutation (i.e., roll) operator, ⊗
denotes the binding operator, ⊕ denotes the bundling operator,
and n is the length of the n-grams. In this case n = 3. In order
to keep the precision of the sentence embeddings low (i.e. in
the set {±1}) we quantize the resulting sentence embedding
with the function

q(x) =

{
+1 if x ≥ 0

−1 if x < 0.
(2)

Training the model is performed as follows. Each sentence
embedding, which has a ground truth language associated to
it, will be added to the appropriate langugage “prototype”
vector. The prototype vectors are initialized as 21 vectors
filled with zeros for the 21 languages. The model is trained
by adding sentence embeddings to these prototype vectors. At
the end of training, the 21 language vectors are normalized so
that they are all unit vectors, which removes any bias due to
some classes having more examples than others. The model
is evaluated by computing the cosine similarity between the
test set sentence embeddings and each of the 21 prototype
vectors and selecting the language with the highest similarity
score.

We train both models on the Wortschatz European language
corpus [5]. The dataset contains 210,032 training examples and
21,000 test examples across 21 Europan languages (Bulgarian,
Czech, Danish, Dutch, German, English, Estonian, Finnish
, French , Greek, Hungarian, Italian, Latvian, Lithuanian,
Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish,
Swedish).

III. TRAINING AND PROFILING METHODOLOGY AND
EXPERIMENTAL RESULTS

Our primary objective is to benchmark a commonly used
deep learning model against an HDC model on 4 key dimen-
sions:

1) Training and inference time
2) Test set accuracy with respect to training set size
3) FLOP and memory usage
4) Robustness to text corruption.

Fig. 1. Training times for one epoch using the baseline HDC model, optimized
HDC model, and the deep learning model.

Fig. 2. Inference times on the test set for one epoch using the baseline HDC
model, optimized HDC model, and the deep learning model.



Figures 1 and 2 show an incredible difference in time
taken for one epoch of the training and test set, respectively,
when running on an NVIDIA Tesla T4 GPU with a batch
size of 32. Training time takes 1,559 seconds for the deep
learning model and 101 seconds the HDC model, which is a
15x speedup. We will explain why there is such a discepancy
when we adress FLOP and memory usage.

We then looked at test set accuracy with respect to
training set size. We varied the dataset size from 0.01% of the
training dataset all the way up to its full size. Figure 3 shows
the results of that experiment and HDC demonstrates strong
few-shot behavior. In other words, it largely outperforms the
deep learning model when the training set size is small and
it isn’t until the training set size is 10% of the full training
set that the deep learning model begins to outperform HDC,
albeit only marginally. It is interesting to note, however, that
backpropagation seems to provide a much stronger learning
signal that allows the deep learning model to continue to
refine itself, whereas the HDC model saturates rather quickly
and doesn’t seem to be able to improve any futher. Future
work might investigate better learning mechanisms in HDC
models.

Fig. 3. Test set accuracy with respect to training set size.

We then investigated the FLOP and memory usage of the
two models. Table II shows the number of FLOPs required
by a forward pass of the model on a single example and the
parameter count includes the number of model parameters
in memory. We used Meta’s fvcore library1 for deriving
these results. The discrepancy in both FLOP and memory
usage is what accounts for the difference in running times. In
particular, the running time of a transformer model is O(n2)
in the length of the input sequence n due to the self-attention
mechanism, while the running time of the HDC model is
only O(n) because it only needs to encode the sentence and
compare it to a fixed set of class prototype vectors. This
leads to very interpretable results. In particular, the 210,000
HDC FLOPs correspond to the cosine similarity calculations
against the 21 prototype vectors, each of which is a 10,000

1https://github.com/facebookresearch/fvcore

dimensional vector. The number of parameters (490,000
= 210,000 + 280,000) corresponds to the 21 prototype
vectors, each of which is a 10,000 dimensional vector,
plus the 28 character vectors, each of which is a 10,000
dimensional vector. Again, we note that the HDC model
delivers performance matching the deep learning model with
a fraction of the deep learning model’s 43,135,509 parameters.

TABLE II
FLOP AND MEMORY USAGE OF THE TWO MODELS.

Model Parameters FLOPs

HDC 490,000 210,000
distilbert-base-uncased 43,135,509 936,371,712

Our final experiment was to test the robustness of the two
models to text corruption. Many HDC papers note the robust-
ness of the framework to corruption of its internal memory,
but fewer works address the models’ robustness to corruption
of the input. We defined the following corruption scheme for
the test set. We define a corruption rate, and for each character
in the sentence, we randomly decide whether to corrupt it or
not. If we decide to corrupt it, we choose uniformly over the
following action set to corrupt that character:

1) Insert a random character
2) Delete the character
3) Substitute the character with a random character
4) Swap the character with the next character.
We tested the models on the test set while varying the

corruption rate. The results are shown in Figure 4. We again
observe that the HDC model outperforms the deep learning
model in this regard. As the corruption rate is increased, we
see the performance of the deep learning model decline faster
than the HDC model, indicating the HDC model has a higher
degree of robustness to corrupted text input.

Fig. 4. Test set accuracy with respect to corruption rate.

IV. PERFORMANCE TUNING METHODOLOGY

While tuning was not the primary objective of this project,
we did find one opportunity for performance improvement.
In particular, after profiling the HDC model using the

https://github.com/facebookresearch/fvcore


torch.profiler we found that the HDC model was
spending a significant amount of time in the torch.roll
function, which is responsible for the shifting of vector ele-
ments to the left by 1 or 2 elements as described in Section
II. This function must shift all elements of a vector, which we
know will require an enormous number of memory accesses
to carry out. Taking inspiration from the way that convolution
operations can be implemented as matrices, we implemented
a “roll matrix”, which looks like the following:0 0 1

1 0 0
0 1 0

 , (3)

which is corresponds to rolling by 1 dimension. Instead of
focusing on rolling the entire 10,000 dimensional vector, we
only rolled the last 3 dimensions.

Fig. 5. We note the blue portion of the pie chart denoting the torch.roll
operation, which dominates the HDC runtime.

Figure 5 shows the torch.profiler results that tipped
us off to the bottleneck. Figures 1 and 2 show the running time
comparison for one epoch of data before and after implement-
ing this optimization. After implementing the described roll
matrix, we obtain more than a 2x speedup, albeit at a slight
cost of accuracy, which declines to about 90% from about
98%. At a minimum, it is useful to be aware of this choice
that a developer has to sacrifice a small amount of accuracy
in exchange for a faster runtime.

V. CONCLUSION

We have shown that the HDC model is a viable alternative
to deep learning models for text classification tasks. We have
shown that the HDC model is more robust to corruption
of the input text, and that it is more efficient in terms of
memory usage and runtime. We have also shown that the
HDC model is more accurate than the deep learning model
when the dataset size is small. Future work can determine how
applicable HDC models are to other natural language tasks.
For example, there are very natural extensions to this work for
approximate nearest neighbor seach for document retrieval.
It’s also possible that the HDC model can be extended to
other tasks such as machine translation or question answering

though suitable next word prediction schemes must be devised.
Our model was incredibly efficient because we only materi-
alize a codebook for 28 characters, however, if we had to
retain a larger codebook (e.g., for a vocabulary of size 30,000
or more), we would start running into issues with memory.
Future work can investigate how to efficiently handle larger
codebooks. Finally, we note that the HDC models are shallow,
essentially single layer encoder-decoder models. Future work
can investigate the performance of deeper HDC models. HDC
models also have a rather trivial learning scheme. It would
be interesting to investigate other learning schemes for HDC
models. In closing, high-dimensional, low precision spaces
inspired by the human brain have useful properties that we
can exploit to build efficient and accurate models.

VI. APPENDIX

TABLE III
HDC ACCURACY SCORES BY DATASET SIZE.

Examples Dataset Pct. Accuracy

21 0.0001 0.2682
210 0.0010 0.8658
2100 0.0100 0.9590
4200 0.0200 0.9664

10501 0.0500 0.9697
21003 0.1000 0.9736
42006 0.2000 0.9727
105016 0.5000 0.9730
210032 1.0000 0.9740

TABLE IV
DEEP LEARNING ACCURACY SCORES BY DATASET SIZE.

Examples Dataset Pct. Accuracy

21 0.0001 0.0476
210 0.0010 0.0541
2100 0.0100 0.7886
4200 0.0200 0.8629

10501 0.0500 0.9513
21003 0.1000 0.9652
42006 0.2000 0.9793
105016 0.5000 0.9855
210032 1.0000 0.9898

TABLE V
DEEP LEARNING SPEED ANALYSIS.

Model Training-Time Testing-Time

HDC 101.395437 10.215967
HDC-Optimized 44.142246 4.526111

distilbert-base-uncased 1559.166500 88.025828

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.
03762

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


[2] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, “Superglue: A stickier benchmark
for general-purpose language understanding systems,” CoRR, vol.
abs/1905.00537, 2019. [Online]. Available: http://arxiv.org/abs/1905.
00537

[3] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing.”
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2934583.2934624

[4] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” 2020.

[5] U. Quasthoff, M. Richter, and C. Biemann, “Corpus portal for search
in monolingual corpora,” in Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06). Genoa,
Italy: European Language Resources Association (ELRA), May 2006.
[Online]. Available: http://www.lrec-conf.org/proceedings/lrec2006/pdf/
641 pdf.pdf

[6] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Brew, “Huggingface’s
transformers: State-of-the-art natural language processing,” CoRR, vol.
abs/1910.03771, 2019. [Online]. Available: http://arxiv.org/abs/1910.
03771

[7] M. Heddes, I. Nunes, P. Vergés, D. Desai, T. Givargis, and A. Nicolau,
“Torchhd: An open-source python library to support hyperdimensional
computing research,” 2022.

http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://doi.org/10.1145/2934583.2934624
http://www.lrec-conf.org/proceedings/lrec2006/pdf/641_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/641_pdf.pdf
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Introduction
	Models and Data Set Description
	Training and Profiling Methodology and Experimental Results
	Performance Tuning Methodology
	Conclusion
	Appendix
	References

